Export
Back button

Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study

Periodical: Acta Biomater ISBN: 1742-7061  Date: 2014/12/22  Language: eng  Pages: 164-74

Authors:Zhu, W., Wang, M., Fu, Y., Castro, N. J., Fu, S. W., Zhang, L. G.
A copy of this paper may be available for free: Google Scholar Search Google Scholar
Abstract
Traditional breast cancer (BrCa) bone metastasis models contain many limitations with regards to controllability, reproducibility and flexibility of design. In this study, a novel biomimetic bone microenvironment was created by integrating hydroxyapatite (HA) and native bioactive factors deposited by osteogenic induction of human bone marrow mesenchymal stem cells (MSCs) within a cytocompatible chitosan hydrogel. It was found that a 10% nanocrystalline HA (nHA) chitosan scaffold exhibited the highest BrCa adhesion and proliferation when compared to chitosan scaffolds with 20% nHA, 10% and 20% microcrystalline HA as well as amorphous HA. This 3-D tunable bone scaffold can provide a biologically relevant environment, increase cell-cell and cell-matrix interactions as found in native bone, and retain the behavior of BrCa cells with different metastasis potential (i.e. highly metastatic MDA-MB-231, less metastatic MCF-7 and transfected MDA-MB-231). The co-culture of MSCs and MDA-MB-231 in this bone model illustrated that MSCs have the capacity to upregulate the expression of the well-known metastasis-associated gene metadherin within BrCa cells. In summary, this study illustrates the ability of our 3-D bone model to create a biomimetic environment conducive to recapitulating the behavior of metastatic BrCa cells, making it a promising tool for in vitro BrCa cell bone metastasis study and for the discovery of potential therapeutics.

3DCellculture.com's MAMI
search attributes

enhance this article